Beespotting on I-5 and the animal welfare approach to honey

The drive from Seattle to San Francisco along I-5 is a 720-mile panorama of changing biomes. Forest, farmland, and the occasional big city get very gradually drier, sparser, flatter. You pass a sign for the 45th parallel, marking equidistance between the equator and the North Pole. Then the road clogs with semis chugging their way up big craggy hills, up and up, and then you switch your foot from the gas to the brake and drop down the hills into more swathes of farmland, and more intense desert, with only the very occasional tiny town to get gas and bottles of cold water. Eventually, amid the dry hills, you see the first alien tower of a palm tree, and you know the desert is going to break soon.

Of course, I like the narrative arc on the drive back even better. Leaving Berkeley in the morning, you hit the desert in its element – bright and dry – without being too hot. That comes later, amid the rows and rows of fruit and nut trees, which turns into the mountains again, and into the land on the side of the mountains, now dominated by lower bushy produce crops and acres of flat grain land. You pass a sign for Lynn County, the Grass Seed Capital of the US. Finally, well into dusk, you hit the Washington border, and the first rain you’ve seen on the entire trip starts falling right on cue. Then you meet some friends in your old college town for a quick sandwich and tomato soup at 11:30 PM, and everything is set right with the world, letting you arrive back home by an exhausted but satisfied 1:30 AM.

I like this drive for giving a city kid a slice of agriculture. I’ve written about the temporal scale of developments in agriculture, but the spatial scale is just as incredible. About 50% of land in the US is agricultural. Growing the calorie-dense organisms that end up on my plate, or fueling someone’s car, or exported onto someone else’s plate, or someone else’s feedbag, is the result of an extraordinary amount of work and effort.

I talked about the plants – there’s trees for fruit and nuts, vines, grain, corn, a million kinds of produce. I only assume this gets more impressive when you go south from San Francisco. (In recent memory, I’ve only visited as far south as Palo Alto, and was shocked to discover a lemon tree. With lemons on it! In December! Who knew? Probably a lot of you.)

There’s also animals – aside from a half dozen alpacas and a few dozen horses, you spot many sheep and many, many cows from the highway. The cattle ranches were quite pretty and spacious – I wonder if this is luck, or if there’s some kind of effort to put the most attractive ranches close to the highway. Apparently there are actual feedlots along I-5 if you keep going south. I certainly didn’t notice any happy chicken farms along the way.

And then there are the bees.

I.

Bees are humanity’s most numerous domesticated animal. You don’t see them, per se, since they are, well, bees. What you can see are the hives – stacks of white boxes like lost dresser drawers congregating in fields. Each box contains the life’s work of a colony of about 19,200 bees.

800px-osman_bey_ve_arc4b1larc4b1
I forgot to start taking photos until it was already dark out, so here are some Wikimedia photos instead. If you want me to take more photos, feel free to ask for my paypal to fund me making the drive again. 😛 | Photo by Fahih Sahiner, CC BY-SA 4.0

The boxes look like this. The bees look like this.

bienenkoenigin_43a
Photo by Waugsberg, CC BY-SA 3.0.

Bees are enormously complicated and fascinating insects. They live in the densely packed hives described above, receiving chemical instructions by one breeding queen, and eusocially supporting her eggs that become the next generation of the hive. In the morning, individual bees leave the hive, fly around, and search for pollen sources, which they shove into pouches on their legs. Returning, if they’ve located a juicy pollen source, they describe it to other bees using an intricate physical code known as the waggle dance.

waggle_diagram
Waggle dance patterns performed by the worker bees. | North Carolina State Extension publications.

What images of this don’t clearly show is that in normal circumstances, this is done inside the hive, under complete darkness, surrounded by other bees who follow it with their antennae.

The gathered pollen is used to sustain the existing bees, and, of course, create honey – the sugar-rich substance that feeds the young bee larvae and the hive through winter. Each “drawer” of the modern Langstroth beehive – seen above – contains ten wooden frames, each filled in by the bees with a wax comb dripping with honey. At harvesting time, each frame is removed from the hive, the carefully placed wax caps covering each honey-filled comb are broken off, and the honey is extracted via centrifuge. (More on the harvesting practice.)

Each beehive makes about 25 pounds of harvestable honey in a season, and each pound of honey represents 55,000 miles flown by bees. Given the immense amount of animal labor put into this food, I want to investigate the claim that purchasing honey is a good thing from an animal welfare perspective.

I’m not about to say that people who care about animal welfare should be fine eating honey because bees don’t have moral worth, because I suspect that’s not true. I suspect that bees can and do suffer, and at the very least, that we should consider that they might. The capacity to suffer is evolutionary – it’s an incentive to flee from danger, learn from mistakes, and keep yourself safe when damaged. Bees have a large capacity to learn, remember, and exhibit altered behavior when distressed.

Like other social insects, however, bees also do a few things that contraindicate suffering in most senses, like voluntarily stinging invaders in a way that tears out some internal organs and leaves them at high risk of death. In addition, insects possibly don’t feel pain at the site of an injury (though I’m not sure how well studied this is over all insects) (more details). They may feel some kind of negative affect distinct from typical human pain. In any case, it seems like bee welfare is possibly important, and since there are 344,000,000,000,000 of them under our direct care, I’m inclined to err on the side of “being nice to them” lest we ignore an ongoing moral catastrophe just because we didn’t think we had incontrovertible proof at the time.

This is harder than it sounds, because of the almonds.

II.

The beehives I saw on on I-5 don’t live there full-time. They’re there because of migratory beekeepers, who load hives into trucks and drive them all over the country to different fields of different crops. As we were all told in 3rd grade, bees are important pollinators, and while the fields of old were pollinated with a mix of wild insects and individually-managed hives, like other animal agriculture, the bees of today are managed on an industrial scale.

(We passed at least one truck that was mostly covered with a tarp, but had distinctive white boxes visible in the corners. I’m pretty sure that truck was full of bees.)

60-75% of the US’s commercial hives congregate around Valentine’s Day in the middle of California to pollinate almonds. When we say bees are important pollinators, one instance of this is that almonds are entirely dependent on bees – every single almond is the result of an almond tree flower pollinated by a bee. California grows 82% of the world’s almonds.

According to this Cornell University report, honeybees in the US provide:

  • 100% of almond pollination.
  • 90% of apple, avocado, blueberry, cranberry, asparagus, broccoli, carrot, cauliflower, onion, vegetable seed, legume seed, rapeseed, and sunflower pollination.
  • 80%+ of  cherry, kiwifruit, macadamia nut, celery, and cucumber pollination
  • 70%+ of grapefruit, cantaloupe, and honeydew pollination.
  • 60%+ of pear, plum, apricot, watermelon, and alfalfa seed and hay (a major food source for cattle) pollination.
  • 40%+ of tangerine, nectarine, and peach pollination.
  • 5-40% of pollination for quite a few other crops.

Our agricultural system, and by extension, the food you eat is, in huge part, powered by those 344 trillion bees. Much of this bee power is provided by migratory beekeepers. In total, beekeepers in the US make about 30% of their money from honey, and 70% from renting out their bees for pollination.

Sidenote: All of the honey bees kept in the US are one species. (There are also 3000 wild bee species, as well as wild honey bees.) So we’re putting all of our faith in them. If you haven’t been living under a rock for the last decade, you may have heard of colony collapse disorder, which I’d wager is the kind of thing that becomes both more likely and more catastrophic when your system is built on an overburdened monoculture.

III.

Does this mean you actively should eat honey? I really don’t know enough about economics to say that or not. If you’re averse to using animal products, I don’t believe you’re obligated to eat honey – there are many delicious products that do what honey does, from plain sugar to maple syrup to agave to vegan honey.

But if you don’t eat honey and tell other people not to eat honey, I imagine you’re doing that because of a belief that this will lead to fewer bees being brought into existence and used by humans. And if you have this belief that it’s better to have fewer bees used by humans, I’m very curious what you think they’ll be replaced with.

What if you want to reduce the amount of suffering comprised by honeybees in your diet, or in agriculture in general?

One thing people have thought of is encouraging pollination by wild bees and other insects. When thinking about the volume of honeybees you’d need to replace, though, you start to encounter real ethical questions about the welfare of those wild bees. Living in the wild as an insect is plausibly pretty nasty. (I don’t have the evidence either way on whether honey bees or wild bees have better lives – but that if you care about honey bees anyway, it bears considering that this would require humans replacing the huge number of honey bees with other life forms, and that the fact that they’d be living on their own in hedges next to a field, rather than in a wooden hive, doesn’t automatically mean they’ll be happier.)

In addition, scaling up wild pollinators to the scale that would be needed by commercial agriculture would be difficult. Possible, but a very hard problem.

You could eat crops that aren’t mostly pollinated by honeybees. This page lists some – a lot of vegetables make the list. Grains, cereals, and grasses also tend be wind-pollinated.

Beekeeping seems like it might be better than increasing the number of wild pollinators, but migratory beekeeping as a practice reduces bee lifespans, and increases stress markers and parasites compared to stationary hives. Reducing the amount of travel modern hives do might be helpful. Maybe we could just stop growing almonds?

(Although that still leaves us with the problem of apple, asparagus, avocado, blueberry, broccoli, carrot, cauliflower, cranberry, carrot, onions, rapeseed, sunflowers, vegetable seeds, legume seeds, rapeseed, sunflowers…)

It also seems completely possible to raise beehives that are only used for pollination and not honey. This still requires animal labor and more individual bees, but the bees would have less stressful lives.

Or look into robot pollinators.

None of these ideas feel satisfactory, though. I feel like we’ve made our nest of bees and now we have to sleep in it. Any ideas?

beehives_on_the_road
Truck full of beehives. | Photo by Wendy Seltzer. CC BY 2.0.

(Note: I’m aware that this piece is very US-centric. I’m not sure what the bee situation is other countries is like.)

Advertisements

Triptych in Global Agriculture

As I write this, it’s 4:24 PM in 2016, twelve days before the darkest day of the year. The sun has just set, but you’d be hard-pressed to tell behind the heavy layer of marbled gray cloud. There’s a dusting of snow on the lawns and the trees, and clumps on roofs, already melted off the roads by a day of rain. From my window, I can see lights glimmering in Seattle’s International District, and buildings of downtown are starting to glow with flashing reds, neon bands on the Colombia Tower, and soft yellow on a thousand office windows. I’m starting to wonder what to eat for dinner.

It’s the eve before Seattle Effective Altruism’s Secular Solstice, a somewhat magical humanist celebration of our dark universe and the light in it. This year, our theme is global agriculture – our age-old answer to the question of “what are we, as a civilization, collectively going to eat for dinner?” We have not always had good answers to this question.

Civilization, culture, and the super-colony of humanity, the city, started getting really big when agriculture was invented, when we could concentrate a bunch of people in one place and specialize. It wasn’t much specialization, at first. Farmers or hunter-gatherers were the vast majority of the population and the population of Ur, the largest city on earth, was around 65,000 people in 3000 BC. Today, farmers are 40% of the global population, and 2% in the US. In the 1890’s, the city of Shanghai had half a million people. Today, it’s the world’s largest city, with 34 million residents.

What happened in those 120 years, or even the last 5000?

Progress, motherfuckers.

I’m a scientist, so the people I know of are scientists, and science is what’s shaped a lot of our agriculture in the last hundred years. When I think of the legacy of science and global agriculture, of people trying to figure out how we feed everyone, I think of three people, and I’ll talk about them here. I’ll go in chronological order, because it’s the order things go in already.

Fritz Haber, 1868-1934

Fritz.jpg
Fritz Haber in his laboratory.

Haber was raised in a Jewish family in Prussia, but converted to Lutheranism after getting his doctorate in chemistry – possibly to improve his odds of getting high-ranking academic or military careers. At the University of Kulroch in Germany, Haber and his assistant Robert Le Rossignol did the work that won them a Nobel prize: they invented the Haber-Bosch process.

The chemistry of this reaction is pretty simple – it was a fact of chemistry at the time that if you added ammonia to a nickel catalyst, the ammonia decomposed into hydrogen and nitrogen. Haber’s twist was to reverse it – by adding enough hydrogen and nitrogen gas at a high pressure and temperature, the catalyst operates in reverse and combines the two into ammonia. Hydrogen is made from natural gas (CH4, or methane), and nitrogen gas is already 80% of the atmosphere.

Here’s the thing – plants love nitrogen. Nitrogen is, largely, the limiting factor in land plants’ growth – when you see that plants aren’t growing like mad, it’s because they don’t have sufficient nitrogen to make new proteins. When you give a plant nitrogen in a form it can assimilate, like ammonia, it grows like mad. The world’s natural solid ammonia deposits were being stripped away to nothing, applied to crops to feed a growing population.

When Haber invented his process in 1909, ammonia became cheap. A tide was turning. The limiting factor of the world’s agriculture was suddenly no longer limiting.

Other tides were turning too. In 1914, Germany went to war, and Haber went to work on chemical weapons.

During peace time a scientist belongs to the World, but during war time he belongs to his country. – Fritz Haber

He studied deploying chlorine gas, thinking that it would shorten the war. Its effect is described as “drowning on dry land”. After its first use on the battlefield, he received a promotion on the same night his wife killed herself. Clara Immerwahr, a fellow chemist, was a pacifist, and had shot herself with Haber’s military pistol. Haber continued his work. Scientists in his employ also eventually invented Zykkon B. First designed as a pesticide, after his death, the gas would be used to murder his extended family (along with many others) in the Nazi gas chambers.

Anti-Jewish sentiment was growing in the last few years of his life. In 1933, he wasn’t allowed through the doors of his institute. The same year, his friend, and fellow German Jewish scientist, Albert Einstein, went to the German Consulate in Belgium and gave them back his passport – renouncing his citizenship of the Nazi-controlled government. Haber left the country, and then died of a heart attack, in the next year.

I don’t know if Fritz Haber’s story has a moral. Einstein wrote about his colleague that “Haber’s life was the tragedy of the German Jew – the tragedy of unrequited love.” Haber was said to ‘make bread from air’ and said to be the father of chemical weapons. He certainly created horrors. What I might take from it more generally is that the future isn’t determined by whether people are good or bad, or altruistic or not, but by what they do, as well as what happens to the work that they do.

Nikolai Vavilov – 1887-1943

Nikolai.jpg
Vavilov in 1935.

We shall go into the pyre, we shall burn… But we shall not abandon our convictions. – Nikolai Vavilov

As a young but wildly talented agronomist in Russia, the director of the  Lenin All-Union Academy of Agricultural Sciences for over a decade, the shrewd and charismatic Nikolai Vavilov, wanted to make Russia unprecedented experts in agriculture. He went on a series of trips to travel the globe and retrieve samples. He observed that in certain parts of the world, one would find a much greater variety of a given crop species, with a wider range of characteristics and traits not seen elsewhere. This lead to his breakthrough theory, his Vavilov centers of diversity, that the greatest genetic diversity could be found where a species originated.

What has this told us about agriculture? This morning for breakfast, I had coffee (originally from Ethiopia) with soy milk (soybeans originally from China), toast (wheat from the Middle East) with margarine (soy oil, China, palm oil, West and Southwest Africa), and chickpeas (Central Asia) with black bean sauce (central or possibly South America) and pepper (India). One fairly typical vegan breakfast, seven centers of diversity.

He traveled to twelve Vavilov centers, regions where the world’s food species were originally cultivated. He traveled in remote regions of the world, gathering unique wheat and rye in the Hindu Kush, Spain, and Portugal, teff in Somalia, sugar beet and flax in the Mediterranean, potatoes in Peru, fava beans and pomegranates and hemp in Herat. He was robbed by bandits in Eritrea, and nearly died riding horseback along deep ravines in the Pamirs. The seeds he gathered were studied carefully back in Russia, tested in fields, and most importantly, cataloged and stored – by gathering a library of genetic diversity, Vavilov knew he was creating a resource that could be used to grow plants that would suit the country’s needs for decades to come. If a pest decimates one crop, you can find a resistant crop and plant it instead. If drought kills your rice, all you need to do is find a drought-tolerant strain of rice. At the Pavlovsk Experimental Research Station, Vavilov was building the world’s first seed bank.

vavilov centers.png
Vavilov Centers of the world. Image from Humanity Development Library of the NZDL.

In Afghanistan, he saw wild rye intermingled with wheat in the fields, and used this as evidence of the origin of cultivated rye: that it wasn’t originally grown intentionally the way wheat or barley had been, but that it was a wheat mimic that had slipped into farms and taken advantage of the nurturing protection of human farmers, and had, almost accidentally, become popular food plants  at the same time. Other Vavilovian mimics are oats and Camelina sativa.

While he travelled the world and became famous around the burgeoning global scientific community, Russia was changing. Stalin had taken over the government. He was collectivizing the farms of the country, and in the scientific academies, were dismissing staff based on bourgeois origin and increasing the focus on practical importance of work for the good of the people. A former peasant was working his way up through agricultural institutions: Trofim Lysenko, whose claimed that his theory of ‘vernalization’, or adapting winter crops to behave more like summer crops by treating the seeds with heat, would grow impossible quantities of food and solve hunger in Russia. Agricultural science was politicized in a way that it never had been – Mendelian genetics and the existence of chromosomes were seen as unacceptably reactionary and foreign. Instead, a sort of bastardized Lamarckism was popular – aside from being used by Lysenko to justify outrageous promises of future harvests that never quite came in, it said that every organism could improve its own position – a politically popular implication, but one which failed to hold up to experimental evidence.

Vavilov’s requests to leave the country were denied. His fervent Mendelianism and the way he fraternized with Western scientists were deeply suspicious to the ruling party. As his more resistant colleagues were arrested around him, his institute filled up with Lysenkoists, and his work was gutted. Vavilov refused to denounce Darwinism. Crops around Russia were failing under the new farming plans, and people starved as Germany invaded.

Vavilov’s devoted colleagues and students kept up his work. In 1941, the German Army reached the Pavlovsk Experimental Research Station, interested in seizing the valuable samples within – only to find it barren.

Vavilov’s colleagues had taken all 250,000 seeds in the collection by train into Leningrad. There, they hid them in the basement of an art museum and watched them in shifts all throughout the Siege of Leningrad. They saw themselves as protecting Russia’s future in agriculture. When the siege lifted in 1944, twelve of Vavilov’s scientists had starved to death rather than eat the edible seeds they guarded. Vavilov’s collection survived the war.

Gardening has many saints, but few martyrs. – T. Kingfisher

In 1940, Vavilov was arrested, and tortured in prison until he confessed to a variety of crimes against the state that he certainly never committed.

He survived for three years in the gulag. The German army advanced on Russia and terrorized the state. Vavilov, the man who had dreamed of feeding Russia, starved to death in prison in the spring of 1943. His seed bank still exists.

Vavilov’s moral, to me, is this: Science can’t be allowed to become politicized. Whatever the facts are, we have to build our beliefs around them, never the other way around.

Norman Borlaug, 1914-2009

Norman.jpg
Norman Borlaug in 1996. From Bill Meeks, AP Photo.

Borlaug was raised on a family farm to Norwegian immigrants in Iowa. He studied crop pests, and had to take regular breaks from his education to work: He worked in the Civilian Conservation Corps during the dustbowl alongside starving men, and for the Forest Service in remote parts of the country. In World War 2, he worked on adhesives and other compounds for the US MIlitary. In 1944, he worked on a project sponsored by the Rockefeller Foundation and the Mexican Ministry of Agriculture to improve Mexico’s wheat yields and stop it from having to import most of its grain. The project faced opposition from local farmers, mostly because wheat rust had been killing their crops. This wasn’t an entirely unique problem – populations were growing globally. Biologist Paul Erlich wrote in 1968, “The battle to feed all of humanity is over … In the 1970s and 1980s hundreds of millions of people will starve to death in spite of any crash programs embarked upon now.”

Borlaug realized that by harvesting seeds in one part of the country and quickly moving them to another, the government could take advantage of the country’s two growing seasons and double the harvest.

By breeding many wheat strains together, farmers could make crops resistant to many more diseases.

He spread the use of Haber’s ammonia fertilizers, and bred special semi-dwarf strains of wheat that held up to heavy wheat heads without bending, and grew better in nitrogen fertilizers.

Nine years later, Mexico’s wheat harvest was six times larger than it had been in 1944, and it had enough wheat to export.

Borlaug was sent to India in 1962, and along with Mankombu S. Swaminathan, they did it again. India was at war, dealing with famine and starvation, and was importing necessary grain for survival. They used Borlaug’s strains, and by 1968, were growing so much wheat that the infrastructure couldn’t handle it. Schoolhouses were converted into granaries.

His techniques spread. Wheat yields doubled in Pakistan. Wheat yields in the world’s least developed countries doubled. Borlaug’s colleagues used the same process on rice, and created cultivars that were used all over Asia. Borlaug saw a world devastated by starvation, recognized it for what it was, and treated it as a solvable problem. He took Haber’s mixed legacy and put it to work for humanity. Today, he’s known as the father of the Green Revolution, and his work is estimated to have saved a billion lives.

We would like his life to be a model for making a difference in the lives of others and to bring about efforts to end human misery for all mankind. – Statement from Borlaug’s children following his death


What’s next?

When I think of modern global agriculture, this is who I think of. I’ve been trying to find something connecting Vavilov and the Green Revolution, and haven’t turned up much – although it’s quite conceivable there is, given Vavilov’s inspirational presence and the way he shared his samples throughout the globe. Borlaug’s prize wheat strain that saved those billion lives, Norin 10-Brevor 14, was a cross between Japanese and Washingtonian wheat. Past that, who knows?

One of the organizations protecting crop diversity today is the Consultative Group for International Agricultural Research (CGIAR), which was founded in 1971 by the Rockefeller Foundation as the Green Revolution was in full swing. They operate a variety of research stations worldwide, mostly at Vavilov Centers in the global south where crop diversity is highest. Their mission is to reduce global poverty, improve health, manage natural resources, and increase food security.

They must have been inspired by Vavilov’s conviction that crop diversity is essential for a secure food supply. If a legacy that’s saved literally a billion human lives can be said to have a downside, it’s that diets were probably more diverse before, and now 12 species make up 75% of our food plant supply. Monocultures are fragile, and if conditions change, a single disease is more likely to take out all of a crop.

glamox
The Svalbard Seed Bank. Image from Glamox.

In 2008, CGIAR brought the first seed samples into the Svalbard Seed Vault – a concrete structure buried in the permafrost. It’s constructed as a refuge against whatever the world might throw. If electricity goes out, the permafrost will keep the seeds cool. If sea levels rise, the vault is built on a hill. The land it’s on is geologically stable and very remote. And it stores 1,500,000 seeds – six times more than Vavilov’s 250,000 – at no cost to countries that use it.

WorldHungerGraph.png

Let it be known: starvation is on its last legs. We have a good thing going here. Still, with global warming and worse things still looming over the shoulder of this tentative victory, let’s give thanks to the movers and shakers of global agriculture for tomorrow: the people ensuring that whatever happens next, we are going to be fed.

We are going to be eating dinner, dammit.

Happy Solstice, everyone.

So You’re Not Ready To Go Vegetarian

[Content warning: Moralizing about what food you should eat, descriptions of bad things happening to animals, eating bugs. Also, lots of people can’t go vegetarian or significantly alter their diet at all due to health, cost, time, sensory issues, strong preferences, lack of options, inability to pick your own diet, etc. Most of the ‘alternatives’ posed here take money, time, or majorly changing your habits. If reading this post is likely to make you feel guilty or bad in an unproductive way, feel free to skip it.]

This is a rather utilitarian list of approaches to improving the lives of animals even if you still eat meat. I’ll start with some general strategies, ranked roughly in order from “least  to most weird”. See what works with your diet, resources, and preferences.


 Basic ideas:

  • Eat less meat in general.
  • Eat less chicken, eggs, beef, and farmed fish.
  • For other animal products, eat Animal Welfare Approved, Certified Humane, or 100% Grass-Fed meat, or buy from a source where you know how the animals are treated.
  • Eat species that suffer less, either in farms or at all.
  • Pay other people to go vegan for you.
  • Support animal welfare by donating money effectively.

I suspect that some people will object to the notion that it’s ever alright to kill or use an animal, and that encouraging people to do this in a “less bad” way is just making compromises with the devil. (As opposed to veganism, which is merely selling your soul to Seitan.) If you’re one of these people, you’re probably already a vegan and this essay isn’t for you.

Not that I entirely disagree- many more people should be vegetarian. That’s not the point, though. Many people are Vegetarian Sympathizers, as I once was. As a young person, for instance, I knew that I had moral issues with the idea of eating animals- that a cow’s brain wasn’t very different from a cat’s, which also wasn’t very different from a human’s. I also knew that meat had unfortunate impacts on the environment and that global warming was a serious problem. But my developmental environment had lots of meat. And also, I had a very strong objection- cheeseburgers.

dicks
Pictured: The Seattle restaurant that was the source of my conflict. The mind is willing, but the flesh is weak. | By Jmabel (CC BY-SA)

This wasn’t a rational objection. But we’re not rational creatures, and the Cheeseburger Objection was the actual thing standing in between me and vegetarianism. And if I’m going to eat cheeseburgers anyways, why not eat steak, chicken, fish, etc.?

Honestly, the Cheeseburger Objection is a pretty good one. One cow makes a lot of cheeseburgers. One cheeseburger might make you very happy. Acknowledging that isn’t a reason to stop caring about animal welfare entirely. And Cheeseburger Objectionists can still make extremely meaningful contributions to animal welfare without depriving themselves of that cheesey goodness.

1. Only go vegetarian sometimes.

Meatless Mondays are a thing- don’t eat meat just one day a week. That’s 1/7 fewer animals you’re eating, and gaining valuable practice in cooking and eating vegetarian. If that’s too easy, up it to two days a week. Repeat.

Some other strategies that have worked for people: eat vegan before 5 o’clock (IE, meals before dinner), only eat meat outside the house, only eat meat inside the house.

Or, if you’re inclined towards vegetarianism- except for cheeseburgers- (or orange chicken, shrimp, your uncle’s venison, baseball stadium hotdogs, etc.-) consider just being a Cheeseburger Vegetarian. I think there’s this tendency to think that if you’re not doing something 100% all the way and identify as that, any tendency you have towards it doesn’t count at all. But that’s completely untrue. Given that we live in a world where most people do eat meat, conspicuously eating less meat both saves animals, and is a talking point that puts vegetarianism on people’s radars.

(Of course, if you’re being a Cheeseburger Vegetarian and hoping to talk to other people about it, people might take you less seriously. This might be a problem. You could either keep your cheeseburger habit private and secretive, hoarding McDonald’s in the dark like the world’s most gluttonous dragon – or you could acknowledge that if someone’s going think that plant-based diets are a joke and not important, they can already find whatever reason they want to do that.)

If you don’t know how to cook food or eat meals without meat, maybe the problem is educational. Look for recipes that contain tofu, beans, lentils, TVP, or vegetables. If you only know one kind of cuisine, broaden your horizons- Indian, Ethiopian, Mexican, Chinese, etcetera, all have lots of opportunities for low meat dishes.

We live in a golden age of easily available recipes. PETA, Vegetarian Times, and Leanne Brown’s free cookbooks are a few good resources. Google it. Also, if you want to make a favorite Food X vegan or vegetarian, look up “Vegan Food X” and you will instantly get 4,000 hits including step-by-step photographs and people’s life stories as told through salad dressing recipes. The internet is a magical place.

2. Eat humanely sourced meat.

This is way harder than it sounds. The good news is that meat is given labels which reflect how it was raised. The bad news is that some of these labels are regulated, and some aren’t, and it’s difficult to determine which labels actually correspond to good living environments and which are symbolic or easily falsified.

Look for the following words on packages:

Certified Organic animals may still be subject to a variety of inhumane conditions. The label means that hormones, antibiotics, and some other treatments are not allowed, and that the animal must be allowed to “exhibit natural behaviors.” I suspect that organic animals are somewhat harder to mistreat, because farmers are incentivized to raise animals in low-disease environments, so organic may be better than conventional if those are your only two options. *

Animal Welfare Approved is an independently-verified certification that has very high welfare standards, including for slaughter. Certified Humane is a less strong but similar certification. There are probably other good ones- look for what they require and how they’ve verified.

Hoofed animals: Look for 100% Grass-Fed, a legally-defined term in which all animals must be raised entirely on pasture (grass, etc) and not fed harvested grain. It seems much harder to mistreat a cow raised this way, since it can’t be confined. This is different from grass-finished, pastured, or normal grass-fed, since all cows eat some grass before they arrive at feedlots.

3. Be careful with chicken.

Chickens are extremely common and live extremely bad lives in factory farms, probably moreso than any other animal.

Cage-free or free-range eggs are better than alternatives, but I don’t think they’re humane. A cage-free chicken may have a somewhat better and more natural life than a non-caged chicken, though they’re newly at risk of fighting with other chickens, which caged chickens aren’t. They may still be subject to having their beaks cut off, slaughter of male chicks (half of all egg-laying chickens are killed shortly after hatching), bird flu, crowded environments, being raised in darkness, starvation-based forced molting, etc.

A couple examples:

  • Free-range – the amount of time or space required for “outdoor access” isn’t legally defined, and varies from facility to facility.
  • A cage-free chicken is still raised in barns or warehouses. They may have no outdoor access, or have their beaks cut or burned off without anesthesia.
  • Organic eggs still aren’t treated with antibiotics but can still be raised in factory farms.
  • More info on labels.
eggs
Putting a picture of happy chickens here seemed disingenuous, so here’s some eggs, I guess. | The Home Front In Britain, 1935-1945.

Any given egg source may well not do some or all of these- for instance, I’ve heard that there are some egg producers that don’t slaughter male chicks, and the cost of raising them is passed to the consumer as a higher price. The key here is to do your research. If you buy based on label X or Y without further investigation, even at a “nice” natural foods store or co-op, your chicken will probably have been raised in painful, inhumane conditions.

I think your best chance at getting humanely raised chickens or eggs is to buy from a home farmer or very small permaculture farm, ideally where you can see the chickens. These are likely to be significantly more expensive than other options. Farms may still slaughter male chicks.

4. Eat species that suffer less.

Quantification of animal suffering is a new field, and practices for calculating it are general estimates. That said, its numbers come from easily understandable ideas- that it’s worse to be a factory-farmed chicken than a feedlot cow, for instance. Some other ideas include that being killed is painful, so an animal that produces more food over a long period means less suffering per food unit (assuming said animal’s day-to-day existence isn’t terrible.) Also, that having a more complex brain probably means you can suffer more. It’s not an exact science, but it’s what we’ve got.

Brian Tomasik, who has studied animal suffering extensively, suggests using this metric that by eliminating chicken, chicken products, and farmed fish from your diet, you reduce the suffering you inflict on animals by an enormous amount.

Clams and mussels have very simple nervous systems and probably do not feel much pain, while full of nutrients comparable to other animal foods. Ozymandias at Thing of Things suggests that eating bivalves and dairy, and otherwise being vegan, can be a good trade-off between health, enjoyment, and helping animals. Also, you still get to eat clam chowder (if it doesn’t have bacon.)

The jury is still out on whether insects experience suffering. On one hand, insects are pretty simple critters; on the other hand, to produce any significant amount of food, you need a lot of insects, so however much moral weight they do have gets multiplied by a lot. On the third hand, about a quintillion die every year, so your own contribution is pretty marginal. (That number is extrapolation- I suspect most insects live less than a year, so the number is probably higher.)

OLYMPUS DIGITAL CAMERA
Chingrit thot by Takeaway (CC BY-SA)

What is known is that insects are nutritious and environmentally friendly. Sourcing insects is difficult and pricey, so try raising your own.

Exotic meats. I suspect that exotic meats (deer/venison, buffalo, ostrich, etc.) are more likely to be raised in more ethical environments, because as species they’re less domesticated, and therefore harder to mistreat as in a factory farm. However, I have no evidence for this.

5. Eat environmentally sound meat.

Most of this list comes from a moral argument, but the negative environmental impacts of standard meat is so well-established that it’s worth discussing. 30% of the world’s non-frozen dry land is currently devoted to feeding or raising animals, and 18% of human-produced greenhouse gases came from agriculture. Lamb and beef have disproportionately high greenhouse gas emissions. You’ll note that chicken is rather low on this ranking, but as in the above section, there are other reasons to avoid it.

“Don’t non-animal-product foods also have carbon emissions?” Not that much.

green_house_proteins
Source and more info.

Fish is extremely nutritious, but many species are overfished. Eat conscientiously to avoid making the problem worse- the Monterey Bay Aquarium Seafood Watch has detailed recommendations for the consumer based on your location, sorted into handy “okay to eat” and “avoid this” categories. Bycatch ratios are another thing to beware: shrimp fisheries are the worst, trawling up an average 6 times more non-shrimp than shrimp.

6. Convince someone else to go vegan.

A review (again by Tomasik) of organizations that run ads promoting vegetarianism suggest that the cost of converting a someone to be vegan for a year is, conservatively, about $100. Do you have the money to spare, and think there should be more vegans, but eating meat is worth more than a hundred dollars to you?

Utilitarianism: it works.

cool skeleton
Utilitarianism: It’s this cool. And the ends justify the memes.

This approach won’t work forever, of course – if everybody decided that they individually would eat meat but convince others not to, the cost of getting anyone to go vegan would skyrocket. But not everybody is, and for the time, it’s still low-hanging fruit.

7. Donate to effective charities.

Can we do even better? The average vegetarian saves ~25 land animals per year (and perhaps 371-582 animals per year including fish and shellfish) according to the blog Counting Animals.

The Effective Altruism movement, which is near and dear to my heart, has produced several lovely projects, including Animal Charity Evaluators– a highly evidence-based group that researches which animal welfare organizations have the most bang for your buck. (Sort of the Givewell of the greater biosphere.) An $100 donation to any of their top three charities is estimated to indirectly save or spare the lives of 7,597 animals. (Via outreach, undercover video filming, corporate outreach, and more.)

ace_horizontal

A final note: People sometimes get annoyed at vegetarians or vegans because they think they’re being smug or morally uppity. This always seemed to me like a strange criticism – the problem is that they’re doing something good? – but if you think it has merit, imagine how smug you can feel in the knowledge that every year, you donate $100 to a certain charity, and that has the same effects as going vegetarian for thirteen years, every year.**


Updated 4/14/2017.

Further reading:


* Michael Pollen says in his book The Omnivore’s Dilemna that it’s difficult to get Organic certification, which has many requirements and regulatory steps, so some small and comparatively extremely humane farms may not (despite meeting many or all criteria for the certificate.)

**Note that you’re not allowed to use this to smugly dismiss vegetarianism unless you have actually made a substantial donation to ACE charities. If you don’t, and proceed to use the fact that that someone could make such a donation to be a dick to vegans, you’re doing negative good and the Utilitarianism Skeleton will get you.